
Collecting and Evaluating the CUNY ASL Corpus  

for Research on American Sign Language Animation 

Pengfei Lu 
Doctoral Program in Computer Science 

The Graduate Center, CUNY 
City University of New York 

365 Fifth Ave, New York, NY 10016 
pengfei.lu@qc.cuny.edu 

Matt Huenerfauth 
Department of Computer Science 

Queens College and Graduate Center 
City University of New York (CUNY) 

65-30 Kissena Blvd, Flushing, NY 11367 
matt@cs.qc.cuny.edu 

 

Abstract 

While there is great potential for sign language animation generation software to improve the ac-

cessibility of information for deaf individuals with low written-language literacy, the understanda-

bility of current sign language animation systems is limited. Data-driven methodologies using 

annotated sign language corpora encoding detailed human movement have enabled some research-

ers to address several key linguistic challenges in ASL generation.  This article motivates and de-

scribes our current research on collecting a motion-capture corpus of American Sign Language 

(ASL).  As an evaluation of our motion-capture configuration, calibration, and recording protocol, 

we have conducted several rounds of evaluation studies with native ASL signers, and we have 

made use of our collected data to synthesize novel animations of ASL, which have also been eval-

uated in experimental studies with native signers. 

1 Introduction 

Sign languages are natural languages conveyed by movements of the hands, arms, torso, head, face, 

and eyes.  There are different sign languages used around the world, and sign languages in different 

countries are not typically mutually intelligible.  Further, the sign language in a country is often 

distinct from the spoken/written language in use in that country; a sign language is not merely a 
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manual representation of the word order of the local spoken language.  Typically, a sign language 

will emerge and develop naturally through its use among a community of signers in some region.   

In the U.S., American Sign Language (ASL) is the primary means of communication for 

about one-half million people (Mitchell et al., 2006).  ASL has a distinct word-order, syntax, and 

lexicon from English; it is not a representation of English using the hands.  Although written-

language reading is an important part of the curriculum for deaf students, lack of auditory exposure 

to English during the language-acquisition years of childhood leads to lower literacy for many 

adults.  In fact, the majority of deaf high school graduates in the U.S. have only a fourth-grade (age 

10) English reading level (Traxler, 2000).  While these statistics have focused on ASL and the 

U.S., similar trends in sign language usage, literacy, and deafness are present in many countries.  

Most technology used by people who are deaf does not address this literacy issue; many 

deaf people find it difficult to read the English text on a computer screen or on a television with 

text captioning.  Software to present information in the form of animations of ASL could make in-

formation and services more accessible to deaf users, by displaying an animated character perform-

ing ASL, rather than English text.  Research on synthesizing ASL animations will therefore benefit 

people who are deaf or hard-of-hearing with low literacy of English reading and use ASL as their 

preferred language – this is the target user group of ASL animation technologies.   

1.1 Research Goals and Organization of this Article 

Our research goal is to create technologies that make it easier to synthesize computer animation of 

ASL, to increase the accessibility of information available on websites, presented by computer 

software, or through future captioning technologies.  This article primarily focuses on our efforts to 

construct and evaluate a corpus of ASL – containing 3D movement data and linguistic annotations 

– to support our research on ASL animation synthesis technologies. 



Section 1.2 explains why animation technologies for ASL are necessary, with advantages 

over videos of human signers in various scenarios.  Section 1.3 briefly presents some linguistic as-

pects of ASL that make it challenging to create synthesis technology.  Section 1.4 surveys prior 

work on ASL animation technologies and explains how the majority of research in the field does 

not make use of data recorded from human signers (i.e., they are not “data-driven,” unlike most 

modern research in the field of Natural Language Processing).  Section 1.5 explains how there is a 

critical lack of corpora resources for ASL – in particular, corpora containing 3D movement data 

recorded from humans – to support research on ASL animations.   

We have therefore begun a multi-year project to collect and annotate a motion-capture cor-

pus of ASL.  Prior ASL corpus-building projects are outlined in section 1.5, and section 2 describes 

our data collection and annotation methodology.  We intend to use this corpus of human motion 

data and linguistic annotation to train statistical models for use in ASL animation synthesis tech-

nologies; we also anticipate that this corpus will be of interest to ASL linguists and other research-

ers.  Our initial research focus is to model where signers tend to place spatial reference points 

around them in space and to discover patterns in the motion paths of indicating verbs (linguistic 

details in section 4).  There are several important aspects of our research: 

• We use a novel combination of hand, body, head, and eye motion-tracking technolo-
gies and simultaneous video recordings (details in section 2.1 and 2.2). 

• We collect multi-sentence single-signer ASL discourse through various elicitation 
techniques designed to elicit desired linguistic phenomena (details in section 2.3). 

• We annotate novel linguistic information relevant to the use of space around the sign-
er’s body to represent entities under discussion (details in section 2.4).  

• We have conducted evaluations to determine whether our motion-capture equipment 
configuration is sufficiently sensitive and well-calibrated – such that we can record key 
movement details of the human performance (details in section 3). 

• We involve ASL signers in the research: as evaluators of our generation software, as 
research assistants conducting evaluation studies, and as corpus annotators.  This in-
volvement of native signers allows us to conduct rigorous evaluation studies and add 
linguistically accurate annotations to our corpus. (Details in section 2.4 and 3.) 



• We train mathematical models of sign language based on data extracted from our cor-
pus.  For example, we have trained models of the movement path of ASL indicating 
verbs based on examples of verb performances for different arrangements of the verb’s 
subject and object in the signing space; these models produce high-quality animations 
(Huenerfauth and Lu, 2010b; Lu and Huenerfauth, 2011a).  (Details in section 4.) 

1.2 Applications of ASL Synthesis Research 

While writing systems for ASL have been proposed (e.g., SignWriting, 2012), none is widely used 

in the Deaf community; so, websites or software must display videos or animations of ASL.  A lim-

itation of video is that if the information content on a website is frequently updated, the video 

would need to be frequently and largely re-recorded for each modification.  For many websites or 

applications, there would be a benefit from enabling easier editing of an ASL message; a human 

author could prepare a “script” of the ASL message, which could be synthesized automatically into 

animation or video. While is possible to splice together videos of human signers to produce novel 

messages, it is difficult to produce smooth transitions between signs, subtle motion variations in 

performances, or proper combinations of facial expressions with signs.  Animation-based synthesis 

technology enables more control, blending, and modulation than spliced videos. 

Animation-based synthesis also supports privacy, collaboration, and customization.  Be-

cause the face is used to indicate important information in ASL, videos of sign language must in-

clude the face of the human signer – thereby revealing the identity of the human who is producing 

the ASL video.  Instead, a virtual human character in an animation would not reveal the human 

signer’s identity.  For wiki-style applications in which multiple authors are collaborating on infor-

mation content, ASL videos could be distracting: the person performing each sentence may differ.  

A virtual human in an animation (that is collaboratively produced) would be more uniform.  Ani-

mations allow ASL to be viewed at different angles, at different speeds, or performed by different 

virtual humans – depending on the preferences of the user.  It may be necessary to adjust these vis-



ual properties to accommodate situational factors; for example, variations in the screen size, ambi-

ent lighting conditions, or other factors could affect the visual clarity of the animation. 

1.3 Use of Spatial Reference in ASL: Challenge for Animation 

Producing a fluent and understandable ASL animation requires researchers to address several chal-

lenging linguistic issues, as discussed in (Lu and Huenerfauth, 2010).  In this article, we focus on 

one aspects of sign language that makes it challenging for NLP research: the way in which signers 

arrange invisible placeholders in the space around their body to represent objects or persons under 

discussion (Cormier, 2002; Janis, 1992; Liddell, 1990; 1995; 2003; Meier, 1990; Neidle et al., 

2000; Padden, 1988).1  An ASL generator must select which entities should be assigned locations 

(and where).  For example, a signer may discuss someone named ‘‘Mary.’’  After mentioning Mary 

the first time, the signer may point to a location in space where a spatial reference point is created 

that represents her.  On future occasions in which the signer wants to refer to Mary, the signer will 

simply point to this location.  Sometimes the subject/object is not mentioned in the sentence, and 

the use of eye-gaze or head-tilt aimed at these locations is the only way in which the signer con-

veys the identity of the subject/object (Neidle et al., 2000).  On other occasions, a signer may set up 

a spatial reference point on the left side of the signing space and one on the right; later, when dis-

cussing these entities contrastively, a signer may orient the torso at one side or another.   

Unfortunately, modern sign language scripting, generation, or machine translation (MT) 

software does not automatically handle these spatial aspects of ASL discussed above.  Humans 

authoring ASL animations using state-of-the-art scripting systems must manually add pointing 

signs to the performance that aim at various locations around the virtual human signer. In 

                                                
1 ASL linguists debate whether the locations in space occupy 3D locations or 1-dimensional location on an arc around the 
body (Liddle, 2003; McBurney, 2002; Meier, 1990); we do not seek to engage in this debate.  In our corpus (section 2), 
we collect the motion data of how the signer’s body moves, and we mark the moments in time when a pointing sign oc-
curs to refer to these entities in space. Researchers may analyze our data either in terms of arc-locations or 3D-locations 
where spatial reference points may be -- depending on how they interpret where the finger is pointing. 



(Huenerfauth and Lu, 2012), we described experimental studies that measured how much the lack 

of spatial reference points, pointing pronouns, or contrastive role shift affects the usability of cur-

rent ASL animation technologies.  Native ASL signers evaluated ASL animations that did and did 

not include these phenomena. There were significant benefits to ASL animations in which the vir-

tual character associates entities under discussion with spatial reference points in the signing space, 

uses pointing pronoun signs, and uses contrastive role shift.  If future sign language animation re-

search included better modeling of how the space around a signer is used for spatial references, we 

would expect better comprehension and user-satisfaction scores. 

1.4 Prior Work on ASL Animation 

In the past decade, there have been many initial attempts at generating sign language computer an-

imations.  While this article focuses on ASL, in fact, various sign languages have been the focus of 

computer animation and accessibility research, including Arabic Sign Language (Tolba et al., 

1998), Australian Sign Language (Vamplew et al., 1998), British Sign Language (Cox et al., 2002), 

Chinese Sign Language (Wang et al., 2002), Greek Sign Language (Fotinea et al., 2008), Japanese 

Sign Language (Shionome et al., 2005), Korean Sign Language (Kim et al., 1996; Lee et al., 1997), 

and Sign Language of the Netherlands (Prillwitz et al., 1989).   

Prior work on sign language computer animations can be divided into two areas: scripting 

and generation/translation.  Scripting systems allow someone who knows sign language to “word 

process” an animation by assembling a sequence of signs from a lexicon and adding facial expres-

sions.  For example, the eSIGN project (2012) created tools for content developers to build sign 

databases and assemble scripts of signing for web pages (Kennaway et al., 2007).  Sign Smith Stu-

dio (Vcom3D, 2012) is a commercial tool for scripting ASL.  Both of these scripting systems ena-

ble a user to select signs from a pre-built dictionary and to arrange them on a timeline to construct 

complete sentences; often the user can also add facial expressions or other movements to produce 



more fluent animations.  While these systems do require significant work from an ASL-

knowledgeable user to produce animations, when compared to the alternative method of producing 

sign language animations (by carefully posing all of the joint angles of a human figure using some 

general-purpose 3D animation software), it is clear that the scripting systems make the process of 

producing sign language animations more efficient and easier. 

Sign language generation research focuses on techniques for further automating the plan-

ning or creation of sign language sentences; a common use of generation technologies is within a 

system for translating from a written-language sentence into a sign language animation.  Most prior 

sign language generation or MT projects have been short-lived, producing few example outputs 

(Zhao et al., 2000; Veale et al., 1998).  The English to British Sign Language system (Marshall and 

Safar, 2001; Safar and Marshall, 2002) for the European Union’s VISICAST project used hand-

built translation transfer rules from English to British Sign Language; the system allowed for hu-

man intervention during MT to fix errors before synthesizing an animation output.  The later 

eSIGN Project (Elliott et al., 2006; eSIGN, 2012; Kennaway et al., 2007) included a human-

assisted machine translation system to convert a written language text into a script for a virtual sign 

language character to perform.  The human can intervene to modify the translation: e.g., finding an 

appropriate gloss for a sign with several possible meanings. The human user may also add facial 

expressions, body movements and pauses, or the user may alter the position or location of a sign.   

While data-driven machine-learning approaches have been common for NLP researchers 

working on written/spoken languages in the past two decades, recently more sign language anima-

tion synthesis researchers are using data from human signers in the development of their systems.   

Bungeroth et al. (2006) transcribed German Sign Language sentences from sign language interpre-

tation of television weather reports to build a small corpus (consisting of strings of transcription of 

the signs), in support of statistical sign language translation research.  Morrissey and Way (2005) 



examined how statistical example-based MT techniques could be used to translate sign language by 

using a small corpus (also consisting of strings of sign sequences) of Dutch Sign Language.  

Segouat and Braffort (2009) built a small corpus of French Sign Language (individual signs and 

multi-sign utterances) by asking annotators to build animations based on video recordings; they 

used this corpus to study coarticulation movements between signs.  Also, studying French Sign 

Language animations, Gibet et al. (2011) captured full-body human motion-capture data, which 

they used as source material to splice together novel messages.  All of these researchers had to con-

struct small corpora for their work (some merely consisting of transcripts of sign sequences and 

some consisting of human movement data).  A limiting factor in the further adoption of data-driven 

research methodologies for sign language animation is the lack of sufficiently detailed corpora of 

ASL (specifically, annotated corpora that include recordings of movement from human signers).  

1.5 Prior Sign Language Corpora Resources 

Sign language corpora are in short supply and are time-consuming to construct because, without a 

writing system in common use, it is not possible to harvest some naturally arising source of ASL 

“text.”  To create a corpus, it is necessary to record the performance of a signer (through video or 

motion-capture).  Humans must then transcribe and annotate this data by adding time-stamped lin-

guistic details.  For ASL (Neidle et al., 2000) and European sign languages (Bungeroth et al., 2006; 

Crasborn et al., 2004, 2006; Efthimiou and Fotinea, 2007), signers have been videotaped and ex-

perts marked time spans when events occur – e.g. the right hand performs the sign “CAR” during 

time index 0-50 milliseconds, and the eyebrows are raised during time index 20-50 milliseconds.  

Such annotation is time-consuming to add; the largest ASL corpus has a few thousand sentences.   

Even if large video-based corpora of sign language were created and annotated, they may 

not actually be sufficient for animation research.  In order to learn how to control the movements of 

an animated virtual human based on a corpus, we need precise hand locations and joint angles of 



the human signer’s body throughout the performance.  Asking humans to write down 3D angles 

and coordinates during an annotation process is time-consuming and inexact; instead, some re-

searchers have used computer vision techniques to model the signers’ movements – see survey in 

(Loeding et al., 2004).  Unfortunately, the complex shape of the hands and face, the rapid speed of 

signing, and frequent occlusion of parts of the body during signing limit the accuracy of vision-

based recognition; it is not yet a reliable way to build a 3D model of a signer for a corpus.  Motion-

capture technology (discussed in section 2.1) is required for this level of detail.  While researchers 

have constructed some collections of motion-capture data of various human movements, e.g. 

(CMU Graphics Lab Motion Capture Database, 2012), there has not yet existed a motion-capture 

ASL corpus; a corpus consisting of sign language movements, with linguistic annotation, is needed 

for ASL animation research. 

2 Collecting an ASL Corpus to Support Animation Research 

Section 1.3 discussed how it is important for human signers (and for animated characters) to asso-

ciate entities under discussion with locations in the signing space.  Spatial modification of signs is 

an inherent part of the grammar of ASL, and they are present in fluent and understandable ASL.  If 

we had a sufficiently large sample of ASL discourse, with linguistic annotation of when the signers 

established and referred to locations in the signing space in this manner, we could learn patterns in 

where and when this spatial reference occurs.  Of course, we would want our corpus to contain mo-

tion-capture data recordings of where exactly the human signer was pointing in the signing space.  

Similarly, researchers studying other linguistic issues, e.g., coarticulation, as in the case of Segouat 

and Braffort (2009), would benefit from a corpus containing motion-capture recordings of human 

signers.  Thus, we are collecting the first motion-capture corpus of ASL, and we are releasing the 

first portion of this corpus to the research community.  This section describes the equipment, re-

cording, annotation, and initial release of this corpus. 



2.1 Our Motion-Capture Configuration 

Assuming an ASL signer’s pelvis bone is stationary in 3D space (the humans we record are sitting 

on a stool), we want to record movement data for the upper body.  We are interested in the shapes 

of each hand; the 3D location of the hands; the 3D orientation of the palms; joint angles for the 

wrists, elbows, shoulders, clavicle, neck, and waist; and a vector representing the eye-gaze aim.  

We are using a customized configuration of several commercial motion-capture devices (as shown 

in Figure 1(a), worn by a human signer): a pair of motion-capture gloves, an eye tracker helmet, a 

head tracker system, and a motion-capture body suit. 

For high quality sign language data, it is important to accurately record the subtle move-

ments of the fingers.  While there are various technologies available for digitizing the movements 

of a human’s fingers, many of these techniques require line-of-sight between a recording camera 

and the fingers.  The rapid movements of sign language (and the frequent occlusions caused by one 

hand blocking another) would make such technologies inappropriate.  For our project, we ask sign-

ers to wear a pair of Immersion CyberGloves® (Figure 2(c)).  Each of these flexible and light-

weight spandex gloves has 22 flexible sensor strips sewn into it that record finger joint angles so 

that we can record the signer’s handshapes.  The gloves still permit comfortable movement; in fact, 

humans viewing someone in the gloves are able to discern ASL fingerspelling and signing. 

The signer being recorded also wears an Applied Science Labs H6 eye-tracker (Figure 

2(d)), a lightweight head-mounted eye-tracker.  The camera on the headband aims downward, and 

a small clear plastic panel in front of the cheek reflects the image of the participant’s eye. In order 

to calibrate the eye-tracker system, we place a clear plastic panel on an easel in front of the signer, 

with several numbered dots (with known placements) on the panel.  We ask the participant to look 

at each dot in sequence during the calibration process. Data from an Intersense IS-900 system (Fig-

ure 2(a) and 2(b)) is used to compensate for head movement when calculating eye-gaze direction. 



This acoustical/intertial motion-capture system uses a ceiling-mounted ultrasonic speaker array 

(Figure 2(a)) and a set of directional microphones on a small sensor (Figure 2(b)) to record the lo-

cation and orientation of the signer’s head.  A sensor sits atop the helmet, as shown in Figure 1(a).  

 

Figure 1: (a) Signer wearing motion-capture equipment (shown in evaluation study in section 3.3), (b) 
Animation produced from motion-capture data (shown in evaluation studies in sections 3.2 and 3.3), 
(c) The face view of the signer, (d) The right-side view of the signer. 

 
 

Figure 2: (a) Intersense IS-900 ceiling-mounted ultrasonic speaker array, (b) Intersense IS-900 ceil-
ing-mounted ultrasonic sensor, (c) Animazoo IGS-190 sensor on the top of one Immersion Cyber-
Glove, (d) Applied Science Labs H6 eye-tracker. 

Finally, the signer also wears an Animazoo IGS-190 bodysuit (Figure 1(a)); this system 

consists of a spandex suit covered with soft Velcro to which small sensors attach.  A sensor placed 

on each segment of the human’s body records inertial and magnetic information.  A sensor is also 

placed atop the Immersion cyberglove shown in Figure 2(c).  Participants wearing the suit stand 

facing north with their arms down at their sides at the beginning of the recording session; given this 



known starting pose and direction, the system calculates joint angles for the wrists, elbows, shoul-

ders, clavicle, neck, and waist. We do not record leg/foot information in our corpus.  Prior to re-

cording data, we photograph each participant standing in a cube-shaped rig of known size; next, we 

draw a human skeleton model atop this photograph and label the corners of the cube-shaped rig in 

the photo.  This process allows us to identify bone lengths of the human participant, which are 

needed for the IGS-190 system to accurately calculate joint angles from the sensor data. 

2.2 Video Recording and Data Synchronization 

Our motion-capture recording sessions are videotaped to facilitate later linguistic analysis and an-

notation. Videotaping the session also facilitates the “clean up” of the motion-capture data in post-

processing, during which algorithms are applied to adjust synchronization of different sensors or 

remove “jitter” or other noise artifacts from the recording.  Three digital high-speed video cameras 

film front view, facial close-up, and side views of the signer (Figure 3); a similar camera placement 

has been used in video-based ASL-corpora-building projects (Neidle et al., 2000). The views are 

similar to those shown in Figure 1, but the camera image is wider than the photos in that Figure. 

The facial close-up view is useful when later identifying specific non-manual facial expressions 

during ASL performances. To facilitate synchronizing the three video files during post-processing, 

a strobe light is flashed once at the start of the recording session.  

To facilitate synchronization of the videos and the motion capture data from the Animazoo 

IGS-190 body suit and Intersense IS-900 head tracker, we ask the signer in the motion-capture 

equipment to perform a very quick head movement (turn the head to one side) immediately after 

the strobe light is flashed at the start of the recording (described above), so that we can identify the 

moment easily when the signer’s head turns in: the three videos, the data from the body suit, and 

the data from head tracker; this allows us to synchronize all of our data streams.   



To facilitate synchronization of the videos and the motion capture data from the Applied 

Science Labs H6 eye-tracker, we ask the signer in the data collection session to close their eyes for 

at least 10 seconds, after he/she opens the eyes, the strobe light flashes (described above), and 

he/she performs the quick head movement (described above) for the synchronization of the videos 

and the body suit data.  We can identify the moment in time when the eyes open in the eye-tracker 

data stream and in the three video recordings – thereby synchronizing these data streams.   

A “blue screen” curtain hangs on the back and side walls of the motion-capture studio 

(Figure 3).  While the background of the video recording is not particularly important for our re-

search, future computer-vision researchers who may wish to use this corpus might benefit from 

having a solid color background for “chroma key” analysis.  Photographic studio lighting with 

spectra compatible with the eye-tracking system is used to support high-quality video recording.   

 

Figure 3: Diagram of an overhead view of our motion-capture studio setup. 

2.3 Eliciting the ASL Corpus 

During data collection, a native ASL signer (called the “prompter”) sits directly behind the front-

view camera to engage the participant wearing the suit (the “performer”) in natural conversation 

(Figure 3).  While the corpus we are collecting consists of unscripted single-signer discourse, prior 

ASL corpora projects have identified the importance of surrounding signers with an ASL-centric 



environment during data collection.  Some ASL linguists (Neidle et al., 2000) have warned other 

researchers about the dangers of permitting English influences in the experimental/recording envi-

ronment when you want to collect video corpora of sign language.  Such English influences can 

affect how the signer performs. English influence in the studio must be minimized to prevent sign-

ers from inadvertently code-switching to an English-like form of signing.  Thus, it is important that 

a native signer acts as the prompter, who conversationally communicates with the deaf participants 

to elicit the verb, sentence, or story being recorded for the corpus.   

Advertisements posted on Deaf community websites in New York City asked whether po-

tential participants had grown up using ASL at home or whether they attended an ASL-based 

school as a young child.  Of the 8 participants we have recorded for the corpus: 7 grew up with 

parents who used ASL at home (the 8th is deaf with hearing parents and started learning ASL as an 

infant, age 1.5), 2 were married to someone deaf/Deaf, 7 used ASL as the primary language in their 

home, 8 used ASL at work, and 8 had attended a college where instruction was primarily in ASL. 

The signers were 8 men of ages 21-34 (mean age 27.9). 

We prefer to collect multi-sentence passages with a varied number of entities under discus-

sion; we also prefer to record passages that avoid complex spatial descriptions, which are not the 

focus of our research.  In (Huenerfauth and Lu, 2010a), we discussed details of: the genre of dis-

course we record, our target linguistic phenomena to capture (spatial reference points and inflected 

verbs), the types of linguistic annotation added to the corpus, and the effectiveness of different 

“prompts” used to elicit the desired type of spontaneous discourse.  As described in (Huenerfauth 

and Lu, 2010a; Lu and Huenerfauth, 2011a), we have experimented with different prompting strat-

egies over the years to elicit ASL signing in which signers establish different numbers of pronomi-

nal reference points in space, perform longer monologues, and other linguistic considerations.  Our 

corpus contains passages in which signers discuss their personal histories, their recollection of 



news stories or movies, their explanation of encyclopedic information, their opinion about hypo-

thetical scenarios, their comparison of people or things, their description of a page of photos, and 

other categories described in (Huenerfauth and Lu, 2010a; Lu and Huenerfauth, 2011a).  Table 1 

lists some of the prompts we have used.  While some prompts use English text, the English influ-

ence was minimized by using a delay of 30 minutes between when texts were read and when ASL 

was recorded.  Further, the participant was asked to discuss concepts in their own words, to a na-

tive ASL signer behind the camera, with whom they had been conversing in ASL about unrelated 

topics during the 30 minutes.  Table 2 provides statistics about the passages we have collected. 

Type of Prompt Description of This Prompting Strategy 
Personal Introduction Please introduce yourself and discuss your background, your hobbies, your family and 

friends, your education, your employment, etc. 
Compare (people) Compare two people you know: your parents, some friends, family members, etc. 
Compare (not people) Compare two things: e.g. Mac vs. PC, Democrats vs. Republicans, high school vs. col-

lege, Gallaudet University vs. NTID, travelling by plane vs. by car, etc. 
Photo Page 
 

Look at this page of photos (of people who are in the news recently) and then explain 
what is going on with them. 

Opinion / Explain Topic Please explain your opinion on this topic (given) or explain the concept as if you were 
teaching it to someone. 

Personal Narrative Please tell a story about an experience that you had personally. 
News Story Recount a brief news article after you read it. 
Children’s Book Explain a story as you remember after you read a short children’s book. 
Repeat Conversation Explain what you saw after watching a 3-minute video of an ASL conversation or of a 

captioned English conversation. 
Wikipedia Article Recount a 300-word Wikipedia article after you read it, e.g. “Hope Diamond” 
Hypothetical Scenario What would you do if: you were raising a deaf child? You could have dinner with two 

famous or historical figures? 
Recount Movie/Book	
   Describe your favorite movie or book. 

Table 1: Examples of some prompts used to elicit the corpus. 

Recording 
session No. 

Signer Glosses in 
total 

Length of video in 
total (seconds) 

Average number of 
glosses per passage 

Average video length of 
the passages 

#1 A 730 364 56.2 28.0 
#2 B 434 236 48.2 26.2 
#3 C 1291 571 117.4 51.9 
#4 D 1512 665 116.3 51.2 
#5 E 735 310 91.9 38.8 
#6 F 4516 2048 180.6 81.9 
#7 G 3467 1786 102.0 52.6 
#8 H 983 633 140.4 90.4 
#9 H 5125 3474 119.2 80.8 
#10 A 2634 1425 67.5 36.5 
#11 B 2165 1178 54.1 29.4 

Table 2: The properties of our corpus. 



2.4 Annotating the ASL Corpus 

A team of native ASL signers at our lab (including linguistics undergraduate students and local 

deaf high school students) use SignStream™ (Neidle et al., 2000) to annotate our corpus.  After 

one annotator finishes a file, it is crosschecked by at least two others, and disagreements are dis-

cussed in an adjudication meeting.  The annotations that we have begun to release (section 2.5) in-

clude English translations of the entire passage and sign glosses (with time alignment to the video). 

Figure 4 shows a transcript and its English translation of a passage collected using the “Compare 

(not people)” prompt. Table 3 explains the notation in the transcript, more details in (Neidle et al., 

2012). Figure 5 shows how parallel timeline tracks are available for the main gloss and a non-

dominant hand gloss, a row which is used when a signer uses his/her non-dominant hand to per-

form a sign or when the signer performs different signs simultaneously on the two hands. 

 
Type of notation Explanation of this notation 

fs-X Fingerspelled word 

IX-1-p:1,2 Index sign (pointing), handshape-#1, plural, spatial reference points #1 and #2. 

IX-1-s:1 Index sign (pointing), handshape-#1, singular, spatial reference point #1. 

IX-1-s:2 Index sign (pointing), handshape-#1, singular, spatial reference point #2. 

CL“X” Classifier Predicate, meaning gloss is provided inside the quotation marks. 

Table 3: The notations in the transcript in Figure 4 and 5. 

fs-MAC  fs-PC  BOTH  COMPUTER  IX-1-p:1,2  BUT  DO-DO   
fs-MAC  UMM  NONE/NOTHING  fs-VIRUS  fs-PC   
NONE/NOTHING  HAVE  fs-VIRUS  POP-UP  PROBLEM   
IX-1-s:2  NOTHING  IX-1-s:2  fs-MAC  EASY  TO/UNTIL  USE   
fs-PC  CAN  #BE  COMPLICATED  UMM  fs-PC  IX-1-s:1   
CAN  BUSINESS  GOOD  FOR  BUSINESS  A-LOT  fs-OF   
fs-WORD  PAPER  CL"type page"  fs-MAC  IX-1-s:2   
NONE/NOTHING  NEGATIVE  PLUS  IX-1-s:S   
FAVORITE/PREFER  fs-MAC  IX-1-s:S  LOVE  fs-MAC  EASY   
TO/UNTIL  USE  TO/UNTIL  LESS  PROBLEM  FIRST-IN-LIST-2   
VERY-FAST  PICTURE_2  TWO  CL"UPLOAD"  PERFECT   
IX-1-s:S  HAPPY  WITH  THAT  COMPUTER 

Both Mac and PC are computers; 
they are different. Mac doesn’t have 
viruses while PC does have virus 
problems. Mac is easy to use, while 
PC is complicated. PC is good for 
business use because of a lot of 
word papers can be typed. Mac 
doesn’t have any negative or posi-
tive. I love to use Mac because it is 
easy to use, fewer problems. It’s 
very fast with uploading pictures. I 
am happy with that computer. 

 
Figure 4: Transcript of a passage we collected using the “Compare (not people)” prompt. 



Figure 5: Excerpts from the annotation timeline for the passage shown in Figure 4. 

Our annotations include information about when spatial reference points (SRPs) are estab-

lished during a passage, which discourse entity is associated with each SRP, when referring expres-

sions later refer to an SRP, and when any verbs are spatially inflected to indicate an SRP.  These 

SRP establishments and references are recorded on parallel timeline tracks to the glosses and other 

linguistic annotations.  Figure 5 shows an annotation timeline for this passage; the first and second 

rows (“Main Gloss” and “Non-Dom. Hand Gloss”) list the sequence of glosses.  The signer estab-

lishes two spatial reference points: The first time that the signer points to two locations in 3D space 

around his body (glossed as “IX-1-p:1,2”), he establishes an SRP at one location to represent “PC”, 

and another SRP at a second location, to represent “Mac.”  Those two SRPs are referred to again 

later in the passage when the signer performs “IX-1-s:1” and “IX-1-s:2” signs (see Table 3).  

In Figure 5, the third row (“SRP#1 Establishment) and fourth row (“SRP#2 Establish-

ment”) indicate when a new spatial reference point has been created.  (The numbers #1 and #2 are 

arbitrary identifiers, customarily we use #1 for the first SRP established in a passage and #2 for the 

second, etc.)  When an SRP is established, then an annotation is added to the appropriate row with 

start- and end-times that align to the sign or phrase that established the existence of this SRP.  The 

Main Gloss                     fs-MAC              BOTH   COMPUTER   IX-1-p:1,2   BUT    DO-DO  … 
Non-Dom. Hand Gloss                 fs-PC 
SRP#1 Establishment                                                                              PC  … 
SRP#2 Establishment                                                                           MAC  … 
SRP#1 References                                                                                      r   …  
SRP#2 References                                                                                      r   … 
                      
Main Gloss                     IX-1-s:2  fs-MAC  EASY  TO/UNTIL  USE   fs-PC  CAN  #BE  COMPLICATED  … 
Non-Dom. Hand Gloss … 
SRP#1 Establishment … 
SRP#2 Establishment … 
SRP#1 References … 
SRP#2 References                   r … 
 
Main Gloss                     fs-PC    IX-1-s:1   CAN   BUSINESS   GOOD   FOR   BUSINESS   A-LOT  … 
Non-Dom. Hand Gloss … 
SRP#1 Establishment  … 
SRP#2 Establishment  … 
SRP#1 References                                 r … 
SRP#2 References  … 



label of the annotation is meant to be a brief gloss of the entity referenced by this SRP.  Some of 

the information on the gloss rows corresponds to the numbers (“1” and “2”) for these SRPs; specif-

ically, the integer after the colon at the end of the gloss “IX-1-s:1” indicates that the pointing sign 

is referring to SRP #1.  A pointing sign directed at SRP #2 appears as “IX-1-s:2”.  By assigning 

each SRP an index number in this manner, the gloss of each pronominal reference to an SRP is 

marked with this index number (following a colon at the end of a gloss in the transcription).2 

Rows 5 and 6 of Figure 5 indicate when signs later in the passage refer again to the SRPs.  

A separate “SRP Reference” row is created for each SRP that is established; while this example 

shows a passage with two SRPs, there could be more rows if needed.  Whenever the entity is re-

ferred to during the passage (including during the initial establishment of the SRP), the “SRP Ref-

erence” row receives an annotation with a label “r” (for “reference”).   Figure 6 shows the average 

number of SRP establishments (i.e., the number of unique SRPs established per passage) and the 

average number of SRP references per passage for each recording session. Some signers were more 

loquacious, producing stories of greater length, after a prompt, leading to a higher number of SRPs. 

 
 

Figure 6: Average number of SRPs established/referenced (per passage) for each recording session. 

                                                
2 Verbs whose motion path is modified to indicate their subject or object location in the signing space are also marked 
with colons and index numbers, corresponding to the SRPs that are serving as the subject or object of the verb. Annota-
tion of movements of the signer’s torso toward locations in space is planned for future work. 



2.5 First Release of the Data 

We began motion-capture data collection in the summer of 2009 and have so far collected and lin-

guistically annotated 242 ASL passages from 8 signers during 11 recording sessions (212 minutes 

of annotated ASL motion-capture data). We are now releasing the first sub-portion of our corpus 

that has been checked for quality and is ready for dissemination.  The released segments of the cor-

pus correspond to “recording sessions” number 6, 7, and 10 (signer E, G, and A), from Table 2. 

This release includes 98 passages performed by 3 native signers. The data includes Autodesk Mo-

tion Builder files of the motion-capture recording, BVH files (another commonly used file format 

for motion-capture data), high-resolution video recordings, and annotations for each passage.  The 

annotations are in the form of plaintext files exported from SignStream™ (Neidle et al., 2000). Ad-

ditional details about the corpus are available in (Lu and Huenerfauth, 2012a).  Given this is our 

first release, we welcome advice and feedback from other researchers about how we should organ-

ize this corpus so that it is most useful.  Future corpus releases may contain revisions of motion 

data formats, additional linguistic annotation, and additional passages (from the other recording 

sessions). Our lab website contains details about the steps required to obtain access our corpus: 

http://latlab.cs.qc.cuny.edu/corpus. 

3 Evaluating Our Collected Motion Data 

This section addresses the question: Have we successfully configured and calibrated our motion-

capture equipment so that we are recording good-quality data that will be useful for NLP re-

search?  If a speech synthesis researcher were using a novel microphone technology to record hu-

man speakers to build a corpus, that researcher would want to experimentally confirm that the 

audio recordings were of high enough quality for research.   Since the combination of motion-

capture equipment we are using is novel and because there have not been prior motion-capture-



based ASL corpora projects, we must evaluate whether the data we are collecting is of sufficient 

quality to drive ASL animations of a virtual character.  In corpus-creation projects for traditional 

written/spoken languages, researchers typically gather text, audio, or (sometimes) video.  The qual-

ity of the gathered recordings is typically easier to verify and evaluate; for motion-capture data, a 

more complex experimental design is necessary (details in sections 3.1, 3.2, and 3.3).  We want to 

measure how well we have compensated for several possible sources of error in our recordings: 

• If the connection between a sensor and the recording computer is temporarily lost, then 
data gaps occur. We selected equipment that does not require line-of-sight connections 
and tried to arrange the studio to avoid frequent dropping of any wireless connections. 

• As discussed previously, participants are asked to perform a quick head movement and 
distinctive eye blink pattern at the beginning of the recording session to facilitate our 
“synchronization” of the various motion-capture data streams during post-processing.  
If done incorrectly or inexactly, then a timing error is introduced into the data. 

• Electronic and physical properties of motion-capture sensors can sometimes lead to 
small random errors (called “noise”) in the data; we can attempt to remove some of this 
noise with smoothing algorithms applied to the data afterward. 

• Differences between the bone lengths and other body proportions between the human 
and the “virtual skeleton” of the animated character being recorded could lead to “re-
targeting” errors; these errors manifest as body poses of the human that do not match 
the body poses of the virtual human character.  We must be careful in the measurement 
of the bone lengths of the human and in the design of the virtual animation skeleton. 

• To compensate for how motion-capture equipment sits on the body on different occa-
sions or on different humans, we must set “calibration” values at the beginning of each 
recording session to adjust sensor sensitivity and offsets; e.g., we designed a novel pro-
tocol for calibrating gloves for ASL signers (Lu and Huenerfauth, 2009).   

Section 3.3 presents a previously unpublished study in which we used motion-capture data 

from our corpus to synthesize animations of sign language, and we showed these animations to na-

tive ASL signers, who answered comprehension questions and subjective survey questions about 

the quality of the animations.  In that study, we presented videos of the humans who were recorded 

for our corpus as an upper-baseline of comparison (some researchers prefer the term “ceiling” to 

the term “upper baseline”). As expected, the videos of humans received higher evaluation scores 

than our animations, but we believe that the scores obtained for our animations indicated that we 



are collecting a corpus of reasonable quality.  Before presenting the results of this study, we will 

summarize the results two other past studies (in sections 3.1 and 3.2). These studies are presented 

as a “lower baseline” for comparison – to enable the reader to better understand and interpret the 

results of the novel study presented in section 3.3. 

Individuals who are not familiar with the process of using motion-capture data to animate 

virtual humans to produce sign language animations are often surprised at the challenges involved 

in this work.  The first instinct of many researchers who are new to this field is that an easy way to 

make high quality animations of signing would be to directly control the movements of a virtual 

avatar based on the motion-capture recordings from a human.  In fact, the results of such “direct 

puppetry” of a virtual human are often extremely difficult to understand, appear jerky, and lack 

accuracy in how the locations of the body align and touch.3  In a prior evaluation study (Lu and 

Huenerfauth, 2010), we compared ASL animations from direct puppetry to ASL animations pro-

duced using a scripting/synthesis approach (that concatenated sign lexical items encoded as 

keyframe movement targets with motion-interpolation between keyframes), and we found that the 

synthesized animations achieved higher comprehension and subjective quality scores.  

3.1 Early Study with Low Comprehension Scores for Motion-Capture Animations 

In Huenerfauth (2006), we constructed a prototype system for planning and synthesizing ASL ani-

mations (containing a specific linguistic construction); the synthesizer used movement interpola-

tion through keyframe location/orientation targets for the hands at specific moments in time.  For 

our user-based evaluation of the resulting animations, we wanted to include “upper baseline” ani-

                                                
3 While human animations can be produced from motion-capture data (as is done for films or video games), typically, 
extensive manual post-editing work is required from skilled animators to correct and adjust the movements to produce a 
clear and understandable result.  While we are using a “direct puppetry” approach to synthesize some ASL animations for 
these evaluation studies -- so that we may evaluate the quality of our motion data -- we do not intend to use direct puppet-
ry to produce ASL animations for our later research.  Instead, we will use the corpus as training data to build machine-
learning models of various ASL linguistic phenomena, and we intend to synthesize novel ASL animations based on these 
resulting models.  This paradigm is exemplified in (Huenerfauth and Lu, 2010b; Lu and Huenerfauth, 2011a). 



mations that would be very natural and understandable.  Somewhat naïve to the complexities of 

using motion-capture data for direct puppetry (summarized above), we decided to use motion-

capture data to produce an animation of a virtual human character.  During the data collection pro-

cess, we manually adjusted the settings of the cybergloves (although, we later learned that we were 

not sufficiently accurate in our calibration), and we adjusted the body size of the virtual human 

avatar to approximately match the size of the human recorded (although, we also later learned that 

we were not sufficiently accurate in this regard). The human performed identical sentences to those 

that were synthesized by our ASL system, and we produced some animations based on this data.  

When we conducted our experiment to evaluate the quality of the ASL animations pro-

duced by our system, we asked participants to rate the animations they saw on Likert scales for 

grammatical correctness, understandability, and naturalness of movement; they also answered 

comprehension questions about the animation to determine how well they understood the infor-

mation it conveyed.  While we had expected the motion-capture-based direct-puppetry animations 

to be the upper baseline in our study (since a human was controlling the moments to produce fluent 

ASL sentences), we found that the motion-capture animations achieved the lowest scores in our 

study.  In Figure 7, adapted from (Huenerfauth, 2006), the bar marked “MO” is the motion-capture 

data, the “CP” is the synthesized animation from our system, and the “SE” is an animation of a 

character performing signs in English word order, which was used as another baseline. 

    

Figure 7: Screenshot of an animation produced from motion-capture data, scores for Likert-scale sub-
jective evaluation questions, scores for comprehension questions – images from (Huenerfauth, 2006). 



Despite our efforts, we had not sufficiently controlled the various sources of error in the 

data collection and animation process, and the resulting animations were very poorly understood.  

Our ASL synthesis system, which was only an early prototype system, actually achieved higher 

scores than the motion-capture-based animations in this case.  Aside from the calibration and body-

size issues mentioned above, it was also clear that the motion-capture based animations had some 

movement-jitter in the data that was inadequately smoothed prior to producing the animations. 

3.2 Prior Study Evaluating Motion-Capture Animation from our CUNY Studio 

Beginning in 2008, we established a new motion-capture recording studio at CUNY, as described 

in section 2.1, which consisted of some equipment that was designed to address problems we had 

encountered in our prior work.  For instance, based on some experiences with dropped wireless 

signals from a pair of gloves used in 2006, we opted for a wired set of cybergloves in our new stu-

dio.  Based on problems with occlusion of the hands during some signs in 2006, we opted for a 

non-optical based motion-capture body suit based on intertial/magnetic sensors in our new studio.  

We also made efforts to improve our equipment calibration, body size retargeting, and data-stream 

synchronization, which had been potential sources of error in 2006.  These details appear in sec-

tions 2.1 and 2.2 of this article, and additional publications about our methodological improve-

ments for ASL motion-capture appear in (Lu and Huenerfauth, 2009; Lu and Huenerfauth, 2010). 

 We conducted a study to evaluate the quality of the motion-capture data we were capable 

of collecting using our new studio and recording process.  A focus of our methodological work was 

on how to best calibrate the cybergloves worn by ASL signers in an efficient and accurate manner.  

Given the 22-sensors sewn into each glove (each of which has a “gain” and “offset” setting which 

must be adjusted to achieve good data), the calibration of these gloves is non-trivial.  Since the 

gloves sit differently on the hands on different occasions, the calibration must be performed for 

each session.  Unskilled personnel may not be able to achieve good calibrations (and thus the data 



collected does not produce recognizable hand shapes), and we found that even skilled personnel 

who managed to calibrate the gloves accurately required too much time (over 1 hour per glove).  

Thus, we designed a novel calibration protocol for the cybergloves designed to be efficient, acces-

sible to deaf participants, and yielding accurate calibration results (Lu and Huenerfauth, 2009).   

To evaluate our glove-calibration process, we collected motion-capture data from a native 

ASL signer, under two different recording conditions: (1) using a pre-existing fast glove calibration 

process (referred to as the “old calibration” in Figures in this section) and (2) using our newly de-

signed glove calibration protocol.  We produced ASL animations via direct puppetry using this da-

ta, and we showed these animations to native ASL signers, who evaluated the results (by answering 

Likert-scale subjective evaluation questions and comprehension questions about the information 

contained in the passages).  In this way, we could compare whether our new glove calibration pro-

tocol allowed us to record better quality motion-capture data.   

A native ASL signer (22-year-old male who learned ASL prior to age 2) performed a set of 

10 ASL stories based on a script we provided; he wore the motion-capture equipment described in 

section 2.1 and underwent the calibration process and protocols described in section 2.2.  As a 

proof-of-concept “reality check” on the quality of the motion-capture data that had collected, we 

wanted to use a simple animation approach (direct puppetry) to “visualize” our collected data with-

out adding any visual embellishments. Autodesk MotionBuilder software was used to produce a 

virtual human whose movements were driven by the motion-capture data collected; see Figure 

1(b).  Figure 8 illustrates the transcript of one example story used in the experiment; the signer re-

hearsed and memorized each story (cue cards were available during the session).4   

                                                
4 It is important to note that the pre-scripted stories used in this study are not part of our CUNY ASL Corpus, described in 
section 2, which contains unscripted data.  Thus, the pre-scripted cue-card text in Figure 8 should not be confused with 
the after-the-fact gloss annotation transcript shown in Figure 4, which was produced by an annotator watching a video 
recording of the unscripted ASL performance after-the-fact.  Pre-scripted stories were used in this study because the 
signer needed to perform each story two times – once with each of the different glove calibrations being compared. 



(a) 
LAST FALL, MY AUNT #SALLY SHE PLAN 
#GARAGE #SALE.   KNOW++ ?   SET-UP TABLE 
OUTSIDE HOUSE.   OLD THINGS DON'T-WANT, 
SELL.   SOMETIMES, ADVERTISE IN 
NEWSPAPER.   IF ARRIVE EARLY, CAN FIND 
GOOD THINGS, GOOD PRICES.   CHEAP.   TEND 
SELL:   (list-of-5)  (1st) OLD BOOKS   (2nd) 
MAGAZINES   (3rd) TOYS   (4th) ART   (5th) 
CLOTHING.   OLD DRESSES, SHE WEAR PAST 
1950s, SHE SELL MANY.  ALSO, MUSIC RECORDS, 
MOST $1.  I HELP AUNT SET-UP.   FINISH.   
WRONG!  NONE  SHOW-UP. 

(b) 
Last fall, my Aunt Sally planned a garage sale.  Do you know 
what that is?  You set up a table outside the house, and then 
you can sell old things that you don’t want anymore.  
Sometimes, you can advertise it in the newspaper.  If you 
arrive early at one, you can often find good stuff at good 
prices.  Stuff is cheap.  People tend to sell old books, 
magazines, toys, art, clothing, etc.  There were a bunch of old 
dressed that my aunt used to wear back in the 1950s; she sold 
a bunch of them. Also, there were records for sale, most for 
$1. I helped my aunt set everthing up.    Unfortunately, when 
we were done, there was a bad surprise: no one showed up! 

Figure 8: A story used in our first evaluation study: (a) a transcript of the sequence of ASL signs in 
the story and (b) an English translation of the story. 

Our choice of a simplistic direct-puppetry animation allowed us to examine whether our 

motion-capture data itself is understandable, without applying any appearance enhancements to the 

animation.  The avatar had a very simple appearance: without any face details. Since no facial ex-

pression information was collected by the motion-capture equipment, any facial expression would 

have been an after-the-fact embellishment from an animator. The lack of facial expression is a crit-

ical limitation of the ASL animations for this study because essential linguistic information is con-

veyed by facial expressions and eye movements in ASL; thus, the face-less animations produced 

for this study would certainly have limited understandability.  Of course, we do not believe that the 

face-less direct-puppetry animation shown in this study could be used as an “end-product” that 

would appear in an application for deaf users.  Simple animations were used in this study so that 

we could evaluate the quality of the corpus data in isolation, that is, in a “raw” form.   

Using questions designed to screen for native ASL signers (Huenerfauth, 2008), we re-

cruited 12 participants to evaluate the ASL animations.  A native ASL signer conducted the studies, 

in which participants viewed an animation and were then asked two types of questions after each: 

(1) ten-point Likert-scale questions about the ASL animation’s grammatical correctness, under-

standability, and naturalness of movement and (2) multiple-choice comprehension questions about 

basic facts from the story.  The comprehension questions were presented in ASL, and answer 



choices were presented in the form of clip-art images (so that strong English literacy was not nec-

essary). Examples of the questions are included in (Huenerfauth, 2008). 

Figure 9 shows how the 10 animations produced using the older glove calibration process 

(“Old Calibration”) and the animations produced using our newly designed glove calibration proto-

col (“Mocap2010”) had similar scores for the grammaticality, understandability, and naturalness of 

the signing movement. The Mocap2010 animations had higher comprehension question scores. 

Statistically significant differences are marked with an asterisk (p<0.05).  The Likert-scale data was 

analyzed using Mann-Whitney pairwise comparisons with Bonferroni-corrected p-values; non-

parameteric tests were selected because the Likert-scale responses were not normally distributed.  

The comprehension question data was analyzed using an ANOVA.  

 
Figure 9: Likert-scale scores and comprehension scores from the evaluation study in 2010.  

These results demonstrate the progress our laboratory has made in collecting motion-

capture recordings of sign language performances with higher levels of quality – in this case, with a 

specific focus on just one aspect of our methodology, the glove calibration process.  What is par-

ticularly notable is the low comprehension score for the “Old Calibration” animations.  While the 

glove calibration in that data was lower quality for those animations, the calibration of the bodysuit 

and other sensors had already been carefully adjusted.  We had previously developed protocols for 

measuring the bone lengths of human participants and matching them to the size of the virtual skel-

etons, synchronizing and aligning the data from the gloves with the data from the bodysuit, and 

other methodology issues – details in (Lu and Huenerfauth, 2010; Lu and Huenerfauth, 2012a).  



Thus, it is notable how difficult to understand animations based on direct-puppetry can be – even 

when there is only one component of the motion-capture setup which has been poorly calibrated. 

A limitation of this study is that it is not presenting an evaluation of actual data that is in-

cluded in our corpus.  This study used pre-scripted stories (with somewhat limited linguistic com-

plexity), and since the signer memorized and performed the story while viewing cue-cards, it is 

likely that the signing is more formal, slower, and more precisely articulated than would be natu-

ral/unscripted ASL signing.  Therefore, we conducted a new study (previously unpublished, de-

scribed in section 3.3) with a larger number of sign language stimuli, sign language data drawn 

from our actual corpus (instead of “scripted” stories), and a larger number of research participants. 

3.3 New Corpus Comparison Study 

After collecting data for three years, we conducted another round of experiments to evaluate our 

motion-capture data.  In this study, we use actual recordings from our corpus: specifically, we used 

12 stories from the 3 native signers (average age 27) that are included in the released portion of our 

corpus (section 2.5).  The average passage length was 97.7 signs, and topics include: personal in-

formation, news stories, explanation of encyclopedia articles, and short narratives.  As in our prior 

study, MotionBuilder was used to produce a virtual human based on the data – see Figure 10(b).   

 

Figure 10: (a) A video recording of a human wearing the motion-capture body suit during the data 
collection process, (b) the recording-based virtual human; (both shown in the study in section 3.3). 



A novel aspect of this study is that we chose to compare the direct-puppetry animation to 

the actual video recording of the human signer (while wearing the motion-capture body suit) during 

the data collection session (Figure 10).  Since the video of the human has a much more detailed and 

natural appearance than our virtual human signer, we would expect higher naturalness and under-

standability scores for the video.  Further, our motion-capture equipment does not record facial ex-

pressions (and so our virtual human in Figure 10(b) has no facial details), thus we would also 

expect higher naturalness and understandability scores for the video of the human signer, since this 

additional facial information is included in that version of each story.  

We recruited 12 native ASL signers to evaluate these ASL animations and videos.  A na-

tive ASL signer conducted the studies, in which participants viewed an animation and were then 

asked two types of questions after each: (1) ten-point Likert-scale questions about the ASL anima-

tion’s grammatical correctness, understandability, and naturalness of movement and (2) multiple-

choice comprehension questions about basic facts from the story.  The comprehension questions 

were presented in the form of videos in which a native signer presented the questions in ASL, and 

answer choices were presented in the form of clip-art images (so strong English literacy was not 

necessary).  Identical questions were used to evaluate the motion-capture animations and the hu-

man video.   For example, the “Mac vs. PC” story shown in Figure 4 was one of the stories used in 

this study; one comprehension question for this story was “Which computer does the signer think is 

good for business?”  Examples of the clip-art answer choices appear in Figure 11.  This set of pic-

tures in Figure 11 is the answer choices to the question “Which does the signer think is good for 

business?” The transcript of this story for this question has been shown in Figure 4. 



 
Figure 11: Example of the answer choices presented as clip-art images to the native signers. 

Before presenting the results of this study, we shall first consider how we would interpret 

the results of this experiment.  We can consider some bases for comparison: 

• As an “upper” basis of comparison, we look to some of our prior work, where we con-
ducted evaluations of computer-synthesized ASL animations, using state-of-the-art 
generation models (Lu and Kacorri, 2012). These animations were the result of several 
years of research into how to produce high-quality ASL animations and were produced 
with the intervention of a human animator (they were not automatically produced); we 
compared the understandability of these animations to videos of human signers.  The 
animations had comprehension questions scores that were 15% lower than human vid-
eos and Likert-scale subjective scores that were 30% lower than human videos.  

• As a “lower” basis of comparison, we note that the motion-capture animations we pro-
duced in (Huenerfauth, 2006) had comprehension question scores that were approxi-
mately 40% lower than synthesized animations and subjective scores that were 
approximately 25% lower.  As another “lower” basis of comparison, we note that the 
experiments in section 3.2 revealed that animations produced using our “old” equip-
ment calibration led to approximately 50% lower comprehension scores and approxi-
mately 14% lower subjective scores, as compared to our new calibration protocols. 

Further, there are reasons why we expect the Mocap2012 animations in this new study to 

receive lower scores than our high-quality computer-synthesized animations in prior work, lower 

scores than human videos of ASL, or lower scores than the simpler scripted stories in section 3.2: 

• The Mocap2012 animations were produced via direct puppetry control of a virtual hu-
man without any additional clean-up or editing work by a human animator to enhance 
the understandability of the animation prior to its use in the study, as typically done 
when artists use motion-capture data to produce animations.  While researchers have 
used motion-capture data to produce high-quality animations of sign language, e.g., 
(Gibet et al., 2011), they made use of sophisticated modeling and processing tech-
niques to enhance the quality of the animation.  Because we are interested in the raw, 
unenhanced use of our motion-capture data, we are using simplistic direct puppetry 
techniques in this study. 

• There were no face details or eye gaze in the Mocap2012 animations (as compared to 
human videos or the computer-synthesized animations in our prior work).  Since facial 



expressions and eye-gaze are an important part of ASL, this limits the potential scores 
that the Mocap2012 animations may achieve. 

• The Mocap2012 animations consisted of unscripted ASL passages produced spontane-
ously by native signers discussing unrestricted topics (though elicited by prompts).  
Thus, we would expect the Mocap2012 animations to contain more complex move-
ments, diverse linguistic structures, and subtleties that might be difficult to perceive in 
an animation), as compared to the scripted Mocap2010 animations in our earlier study 
or the computer-synthesized animation in our prior work. If animations are on simple 
topics, with pre-scripted messages, that avoid complex linguistic structures, at slower 
speeds, then it is more likely that the animation will be able to convey its (simple) 
message successfully to a human viewer. 

• The Mocap2012 animations consisted of continuous signing (with no pauses inserted 
between signs) at natural human speeds, unlike the computer synthesized animations in 
our prior work, which contained some pauses and lower speed.  

 
Figure 12: The comprehension-question and Likert-scale subjective scores for the motion-capture di-
rect-puppetry virtual human animation and the video of a human signer shown in this study. 

Figure 12 displays results of the Likert-scale subjective questions and comprehension-

question success scores for the video recordings of a human and the recording-based motion cap-

ture virtual human evaluated in this study.  Our scoring system gives +1 for correct answers and -

0.25 for wrong answers. The videos (marked as “Video2012”) have higher comprehension scores 

and subjective scores rather than the motion-capture animations (marked as “Mocap2012”).  Statis-

tically significant differences are marked with an asterisk (p<0.05).  Likert-scale data was analyzed 

using Mann-Whitney pairwise comparisons with Bonferroni-corrected p-values, and comprehen-

sion question success rate data was analyzed using an ANOVA.  

This is a promising result because the motion-capture data used to produce the Mocap2012 

animations was taken directly from the released portion of our CUNY ASL Corpus (section 2.5).  



As expected, comprehension scores for the video of a human signer (Video2012) were much higher 

than the scores for Mocap2012; an explanation for this result is that the video included greater vis-

ual detail, the video included a face and eyes, the video had natural coloring and shadows, etc.  

While the signer is wearing some motion-capture equipment in the video, the face and hands are 

visible in the video, and in an open feedback period at the end of the study, no participants men-

tioned difficulty at understanding the humans in the video (although some participants asked about 

why the people in the videos were wearing such equipment). 

 The comprehension question scores for Mocap2012 animations in the new study (Figure 

12) were similar to those of the Mocap2010 animations in our prior study (Figure 9); both had 

comprehension question success scores near 33%.  Given the similar comprehension scores, it was 

interesting that the Likert-scale subjective evaluation scores for Mocap2012 were lower than those 

for Mocap2010.  One reason for the lower Likert-scale scores may be that, in the 2012 study, vide-

os of a human signer were shown as an upper baseline for comparison in the experiments.  In the 

2010 study, no videos of humans were included: two forms of animation were compared.  Based on 

this observation, we hypothesized that when viewed in comparison to a video of a real human sign-

er (with high quality facial appearance, emotional subtlety of facial expression, real shadows and 

colors, etc.), an animation of a virtual human signer may seem (subjectively) to be of lower quality.  

In other words, perhaps an ASL animation would receive lower Likert-scale subjective evaluation 

scores when it is being evaluated in an experiment in which videos of human signers are shown for 

comparison.  To investigate this hypothesis, we conducted a set of experiments to determine quan-

titatively how the inclusion of videos of human signers as a baseline for comparison may affect the 

scores collected in a user-based evaluation study of ASL animations (Lu and Kacorri, 2012).  We 

found that the use of a video of a human signer shown as a basis of comparison in an evaluation 

study of ASL animation can lead to lower Likert-scale subjective scores for the ASL animations. 



4 The Real Test of Quality: Doing Research with the Corpus 

The research question addressed by these prior experiments was whether our motion-capture con-

figuration and recording protocols enabled us to collect motion-data of sufficient quality for data-

driven ASL animation research.  Given the challenges in producing an understandable animation of 

a face-less virtual human from direct puppetry of motion-capture data (see section 3.3), the fact that 

the resulting animations were partially understandable was a positive result.  Given the scoring ap-

proach used for our comprehension questions (which includes negative score penalties for incorrect 

answers, so as to yield scores of 0% from random guessing), we see that the comprehension ques-

tion results for the Mocap2012 animations were well above chance.  Given the similarity in the 

comprehension scores between the Mocap2012 and Mocap2010 animations, we characterize the 

results of this evaluation to be a successful indication that the motion-capture corpus contains 

good-quality data.  Of course, given the lack of any other available annotated motion-capture cor-

pus of ASL, even if the motion-capture data in the corpus were not perfect quality, this would still 

be a contribution to the field, for which there is a lack of available motion-capture ASL corpora. 

While this suggests that our data is of good quality, a real test of our corpus is for it to be 

used in animation research.  If we can build useful ASL-animation synthesis software based on 

analysis of this corpus, then we will know that we have good quality motion-capture data.  In fact, 

we are already doing so: In our current research, we are using data from our corpus to train models 

used to synthesize novel ASL animations.  Specifically, we are studying ASL verbs whose motion 

path depends on where in the signing space an SRP for their subject and object have been estab-

lished (Lu and Huenerfauth, 2011a).  Based on native signers’ evaluations of the animations that 

result from our models, our methodology appears successful – details in (Lu and Huenerfauth, 

2011b; 2012b).  This research is mentioned in this article to illustrate how the collection of sign 

language movement data from humans (and mathematical modeling of this data) can yield a high 

quality ASL animation system, as measured in user-based studies.  This first use of our corpus to 



tackle a challenging problem in sign language generation provides further evidence that the quality 

of the motion-capture data we are collecting at CUNY is sufficient for supporting computational 

linguistic research on ASL. 

5 Conclusions and Future Work 

Given the accessibility benefits of providing information in the form of ASL for people who are 

deaf or hard-of-hearing and who use ASL, our laboratory is focused on advancing ASL animation 

synthesis technologies that make it easier to produce linguistically accurate and understandable 

animations.  To address some challenging linguistic issues in ASL (e.g., the use of spatial refer-

ence, which was a focus of this article), the ASL animation research community is in need of addi-

tional human movement data with linguistic annotation.  Previous researchers assembled small 

corpora ad hoc, and not all of these corpora contained human motion-capture data.  This article has 

presented the CUNY ASL Motion-Capture Corpus, the first portion of which is now released to the 

research community.  Our goal is for this corpus to contain sufficient quality motion-capture data 

and useful linguistic annotations to support research on ASL animation (and possibly for research-

ers studying ASL linguistics or other issues in human motion).   

In addition to providing details about the equipment calibration, elicitation, data pro-

cessing, and annotation process, this article has presented some prior and previously unpublished 

studies of the quality of the motion-capture data collected.  While our research paradigm for using 

this corpus is to train statistical and machine learning models on portions of the corpus and to use 

these models in our ASL animation technologies, for the purposes of evaluation, we have synthe-

sized animation via direct puppetry from the corpus.  Given the challenges in producing under-

standable animation in this way (discussed in section 3), it was notable that participants in studies 

were able to understand some information content in these direct-puppetry animations (section 3.3) 

– suggesting that the data is of good quality.  In current work, we are using our corpus in support of 



our ASL animation synthesis research (section 4) with success – also providing evidence that the 

corpus should be useful for other researchers.  In future work, we will continue to train models of 

where signers place SRPs in the signing space and how verb motion-paths change based on the ar-

rangement of SRPs; these models will be incorporated into our ASL animation software and will be 

evaluated in user-based studies through the participation of ASL signers. 

We will continue to release more corpus data, including additional recording sessions (3 

were included in our first release). We are also adding and verifying additional layers of annota-

tion, including: part-of-speech; syntactic bracketing (NP, VP, clause, sentence); and non-manual 

signals (role shift, negation, WH-word questions, yes-no questions, topicalization, conditionals, 

and rhetorical questions).  As we verify these additional layers of annotation, we will distribute 

them in a future corpus release.  To standardize our glosses, we are also updating them to follow 

the gloss names used in the American Sign Language Lexicon Video Dataset (Neidle et al., 2012). 

As we have just distributed our first release of the corpus, we welcome feedback from the research 

community on how we can make future releases of this corpus most useful for their research. 

Acknowledgments 

This research was supported in part by the U.S. National Science Foundation under award number 

0746556 and award number 1065009, by CUNY PSC-CUNY Research Award Program, and by 

Visage Technologies AB through a free academic license for character animation software. Jona-

than Lamberton assisted with the recruitment of participants and the conduct of experimental ses-

sions. Kenya Bryant, Wesley Clarke, Kelsey Gallagher, Amanda Krieger, Giovanni Moriarty, 

Aaron Pagan, Jaime Penzellna, Raymond Ramirez, Molly Sachs, Evans Seraphin, Christine Singh, 

Fatimah Mohammed, and Meredith Turtletaub have contributed their ASL expertise to the project. 

References 



J. Bungeroth, D. Stein, P. Dreuw, M. Zahedi, H. Ney. 2006. A German Sign Language Corpus of the Domain 
Weather Report. Proc. LREC 2006 Workshop on Representation & Processing of Sign Languages. 

Carnegie Mellon University Graphics Lab Motion Capture Database. Retrived in August 2012. 
http://mocap.cs.cmu.edu/ 

K. Cormier. 2002. Grammaticalization of Indexic Signs: How American Sign Language Expresses Numer-
osity. Ph.D. Dissertation, University of Texas at Austin. 

S. Cox, M. Lincoln, J. Tryggvason, M. Nakisa, M. Wells, M. Tutt, S. Abbott. 2002. Tessa, a System to Aid 
Communication with Deaf People. In 5th International ACM Conference on Assistive Technologies, pp. 
205-212. ACM Press, New York. 

O. Crasborn, E. van der Kooij, D. Broeder, H. Brugman. 2004. Sharing Sign Language Corpora Online: Pro-
posals for Transcription and Metadata Categories. Proc. LREC 2004 Workshop on Representation & Pro-
cessing of Sign Languages, pp. 20-23. 

O. Crasborn, H. Sloetjes, E. Auer, P. Wittenburg. 2006. Combining Video and Numeric Data in the Analysis 
of Sign Languages within the ELAN Annotation Software. Proc. LREC 2006 Workshop on Representa-
tion & Processing of Sign Languages, pp. 82-87. 

eSIGN. Retrived in August 2012. http://www.visicast.cmp.uea.ac.uk/eSIGN/index.html 
R. Elliott, J. Glauert, J. Kennaway, I. Marshall, E. Safar. 2006. Linguistic Modelling and Language-

Processing Technologies for Avatar-Based Sign Language Presentation. Universal Access in the Infor-
mation Society 6(4), pp. 375-391. 

S.E. Fotinea, E. Efthimiou, G. Caridakis, K. Karpouzis. 2008. A Knowledge-Based Sign Synthesis Architec-
ture. Univ. Access in Information Society 6(4):405-418. 

S. Gibet, N. Courty, K. Duarte, T. Le Naour. 2011. The SignCom System for Data-driven Animation of In-
teractive Virtual Signers: Methodology and Evaluation. ACM Transactions on Interactive Intelligent Sys-
tems, Volume 1, Issue 1, Article No. 6. 

M. Huenerfauth. 2006. Generating American Sign Language Classifier Predicates For English-To-ASL Ma-
chine Translation. Doctoral Dissertation, Computer and Information Science, University of Pennsylvania. 

M. Huenerfauth. 2008. Evaluation of a Psycholinguistically Motivated Timing Model for Animations of 
American Sign Language. The 10th International ACM SIGACCESS Conference on Computers and Ac-
cessibility (ASSETS 2008), Halifax, Nova Scotia, Canada. 

M. Huenerfauth. 2009. A Linguistically Motivated Model for Speed and Pausing in Animations of American 
Sign Language. ACM Transactions on Accessible Computing. Volume 2, Number 2, Article 9. 

M. Huenerfauth, P. Lu. 2010a. Eliciting Spatial Reference for a Motion-Capture Corpus of American Sign 
Language Discourse. Proceedings of the 4th Workshop on the Representation and Processing of Signed 
Languages: Corpora and Sign Language Technologies, The 7th International Conference on Language Re-
sources and Evaluation (LREC 2010), Valetta, Malta. 

M. Huenerfauth, P. Lu. 2010b. Modeling and Synthesizing Spatially Inflected Verbs for American Sign Lan-
guage Animations. In Proceedings of The 12th International ACM SIGACCESS Conference on Comput-
ers and Accessibility (ASSETS 2010), Orlando, Florida, USA. New York: ACM Press. 

M. Huenerfauth, P. Lu and A. Rosenberg. 2011. Evaluating Importance of Facial Expression in American 
Sign Language and Pidgin Signed English Animations. The 13th International ACM SIGACCESS Con-
ference on Computers and Accessibility (ASSETS 2011), Dundee, Scotland, United Kingdom. New York: 
ACM Press. 

M. Huenerfauth, P. Lu. 2012. Effect of Spatial Reference and Verb Inflection on the Usability of American 
Sign Language Animations. Universal Access in the Information Society. Berlin/Heidelberg: Springer. 

W. Janis. 1992. Morphosyntax of the ASL Verb Phrase. Doctoral dissertation, State University of New York 
at Buffalo. 

J. Kennaway, J. Glauert, I. Zwitserlood. 2007. Providing Signed Content on Internet by Synthesized Anima-
tion. ACM Trans Comput-Hum Interact 14(3):15. 

J.S. Kim, W. Jang, Z. Bien. 1996. A Dynamic Gesture Recognition System for the Korean Sign Language 
(KSL), IEEE Trans. Syst., Man, Cybern. B, vol. 26, pp. 354–359. 

C.-S. Lee, Z. Bien, G.-T. Park, W. Jang, J.-S. Kim, S.-K. Kim. 1997. Real-time Recognition System of Kore-
an Sign Language Based on Elementary Components. In Proceeding of 6th IEEE International Conference 
on Fuzzy Systems, pp. 1463–1468.  



S. Liddell. 1990. Four Functions of a Locus: Reexamining the Structure of Space in ASL. In C. Lucas, ed. 
Sign Language Research: Theoretical Issues, 176-198. Washington D.C.: Gallaudet University Press 

S. Liddell. 1995. Real, Surrogate and Token Space: Grammatical Consequences in ASL. In Emmorey, Karen 
& Reilly, Judy. S. eds. Language, Gesture, and Space, 19-41. Hillsdale, NJ: Lawrence Erlbaum Associates 

S. Liddell. 2003. Grammar Gesture and Meaning in American Sign Language. UK: Cambridge University 
Press. 

B. Loeding, S. Sarkar, A. Parashar, A. Karshmer. 2004. Progress in Automated Computer Recognition of 
Sign Language, Proc. ICCHP, pp. 1079-1087. 

P. Lu, M. Huenerfauth. 2009. Accessible Motion-Capture Glove Calibration Protocol for Recording Sign 
Language Data from Deaf Subjects. The 11th International ACM SIGACCESS Conference on Computers 
and Accessibility (ASSETS 2009), Pittsburgh, PA, USA. 

P. Lu, M. Huenerfauth. 2010. Collecting a Motion-Capture Corpus of American Sign Language for Data-
Driven Generation Research. Proceedings of the First Workshop on Speech and Language Processing for 
Assistive Technologies (SLPAT), Human Language Technologies: The 11th Annual Conference of the 
North American Chapter of the Association for Computational Linguistics (HLT-NAACL 2010), Los An-
geles, CA,  

P. Lu, M. Huenerfauth. 2011a. Data-Driven Synthesis of Spatially Inflected Verbs for American Sign Lan-
guage Animation. ACM Transactions on Accessible Computing (TACCESS). New York: ACM Press.  

P. Lu, M. Huenerfauth. 2011b. Synthesizing American Sign Language Spatially Inflected Verbs from Mo-
tion-Capture Data. Second International Workshop on Sign Language Translation and Avatar Technology 
(SLTAT), in conjunction with ASSETS 2011, Dundee, Scotland.  

P. Lu, M. Huenerfauth. 2012a.  CUNY American Sign Language Motion-Capture Corpus: First Re-
lease.  Proceedings of the 5th Workshop on the Representation and Processing of Sign Languages: Interac-
tions between Corpus and Lexicon, The 8th International Conference on Language Resources and 
Evaluation (LREC 2012), Istanbul, Turkey. 

P. Lu, M. Huenerfauth. 2012b. Learning a Vector-Based Model of American Sign Language Inflecting Verbs 
from Motion-Capture Data. Proceedings of the Third Workshop on Speech and Language Processing for 
Assistive Technologies (SLPAT), Human Language Technologies: The 13th Annual Conference of the 
North American Chapter of the Association for Computational Linguistics (HLT-NAACL 2012), Montré-
al, Québec, Canada. 

P. Lu, H. Kacorri. 2012. Effect of Presenting Video as a Baseline During an American Sign Language Ani-
mation User Study. In Proceedings of The 14th International ACM SIGACCESS Conference on Comput-
ers and Accessibility (ASSETS 2012), Boulder, Colorado. 

I. Marshall, E. Safar. 2001. The Architecture of an English-Text-to-Sign-Languages Translation System. In: 
Recent Advances in Natural Language Processing (RANLP), September 2001, Tzigov Chark, Bulgaria. 

S.L. McBurney. 2002. Pronominal Reference in Signed and Spoken Language. In R.P. Meier, K. Cormier, D. 
Quinto-Pozos (eds.) Modality and Structure in Signed and Spoken Languages. UK: Cambridge U. Press, 
329-369. 

R. Meier. 1990. Person Deixis in American Sign Language. In: S. Fischer & P. Siple (eds.), Theoretical Is-
sues In Sign Language Research, vol. 1: Linguistics.  Chicago: University of Chicago Press, pp. 175-190. 

R. Mitchell, T. Young, B. Bachleda, M. Karchmer. 2006. How Many People Use ASL in the United States? 
Sign Language Studies 6(3):306-335. 

S. Morrissey, A. Way. 2005. An Example-Based Approach to Translating Sign Language. Proc. Workshop 
on Example-Based Machine Translation, 109-116. 

C. Neidle, D. Kegl, D. MacLaughlin, B. Bahan, R.G. Lee. 2000. The Syntax of ASL: Functional Categories 
And Hierarchical Structure. Cambridge: MIT Press. 

C. Neidle, A. Thangali and S. Sclaroff. 2012. Challenges in Development of the American Sign Language 
Lexicon Video Dataset (ASLLVD) Corpus. 5th Workshop on the Representation and Processing of Sign 
Languages: Interactions between Corpus and Lexicon. LREC 2012. Istanbul, Turkey. 

C. Padden. 1988. Interaction of morphology & syntax in American Sign Language. Outstanding Dissertations 
in Linguistics, Series IV. New York: Garland Press. 



S. Prillwitz et al. 1989. An Introductory Guide to HamNoSys Version 2.0: Hamburg Notation System for 
Sign Languages.  International Studies on Sign Language and Communication of the Deaf. Hamburg: 
Signum.  

E. Safar, I. Marshall. 2002. Sign Language Generation Using HPSG. In Proc. Int. Conf. on Theoretical and 
Methodological Issues in Machine Translation, pages 105–114, TMI Japan. 

J. Segouat, A. Braffort. 2009. Toward the Study of Sign Language Coarticulation: Methodology Proposal. 
Proc Advances in Comput.-Human Interactions, pp. 369-374. 

T. Shionome, K. Kamata, H. Yamamoto, S. Fischer. 2005. Effects of Display Size on Perception of Japanese 
Sign Language---Mobile Access in Signed Language. Proc. Human-Computer Interaction, 22-27. 

SignWriting. Retrieved in August 2011. http://www.signwriting.org/ 
A.S. Tolba, A.N. Abu-Rezq. 1998. Arabic glove talk (AGT): A Communication Aid for Vocally Impaired. 

Pattern Analysis and Applications. 
C. Traxler. 2000. The Stanford Achievement Test, Ninth Edition: National Norming and Performance Stand-

ards for Deaf and Hard-of-Hearing Students. J. Deaf Studies and Deaf Education 5(4):337-348. 
Vcom3D. Retrieved in August 2012. Sign Smith Studio.  http://www.vcom3d.com/signsmith.php 
P. Vamplew, A. Adams. 1998. Recognition of Sign Language Gestures Using Neural Networks, Austral. J. 

Intell. Inform. Process. Syst. 5(2), pp. 94–102. 
T. Veale, A. Conway, B. Collins. 1998. Challenges of Cross-Modal Translation: English to Sign Translation 

in ZARDOZ System. Machine Translation 13:81-106. 
C.L. Wang, W. Gao, S.G. Shan. 2002. An Approach Based on Phonemes to Large Vocabulary Chinese Sign 

Language Recognition, Proc. IEEE Int’l Conf. on Automatic Face and Gesture Recognition, pp. 411–416. 
L. Zhao, K. Kipper, W. Schuler, C. Vogler, N. Badler, M. Palmer. 2000. A Machine Translation System from 

English to American Sign Language. Proc. AMTA. 




